625 research outputs found

    Neural Distributed Image Compression Using Common Information

    Get PDF
    We present a novel deep neural network (DNN) architecture for compressing an image when a correlated image is available as side information only at the decoder, a special case of the well-known distributed source coding (DSC) problem in information theory. In particular, we consider a pair of stereo images, which generally have high correlation with each other due to overlapping fields of view, and assume that one image of the pair is to be compressed and transmitted, while the other image is available only at the decoder. In the proposed architecture, the encoder maps the input image to a latent space, quantizes the latent representation, and compresses it using entropy coding. The decoder is trained to extract the common information between the input image and the correlated image, using only the latter. The received latent representation and the locally generated common information are passed through a decoder network to obtain an enhanced reconstruction of the input image. The common information provides a succinct representation of the relevant information at the receiver. We train and demonstrate the effectiveness of the proposed approach on the KITTI and Cityscape datasets of stereo image pairs. Our results show that the proposed architecture is capable of exploiting the decoder-only side information, and outperforms previous work on stereo image compression with decoder side information

    Neural distributed image compression with cross-attention feature alignment

    Get PDF
    We consider the problem of compressing an information source when a correlated one is available as side information only at the decoder side, which is a special case of the distributed source coding problem in information theory. In particular, we consider a pair of stereo images, which have overlapping fields of view, and are captured by a synchronized and calibrated pair of cameras as correlated image sources. In previously proposed methods, the encoder transforms the input image to a latent representation using a deep neural network, and compresses the quantized latent representation losslessly using entropy coding. The decoder decodes the entropy-coded quantized latent representation, and reconstructs the input image using this representation and the available side information. In the proposed method, the decoder employs a cross-attention module to align the feature maps obtained from the received latent representation of the input image and a latent representation of the side information. We argue that aligning the correlated patches in the feature maps allows better utilization of the side information. We empirically demonstrate the competitiveness of the proposed algorithm on KITTI and Cityscape datasets of stereo image pairs. Our experimental results show that the proposed architecture is able to exploit the decoder-only side information in a more efficient manner compared to previous works

    A Compilation of MATLAB Scripts and Functions for MACGMC Analyses

    Get PDF
    The primary aim of the current effort is to provide scripts that automate many of the repetitive pre- and post-processing tasks associated with composite materials analyses using the Micromechanics Analysis Code with the Generalized Method of Cells. This document consists of a compilation of hundreds of scripts that were developed in MATLAB (The Mathworks, Inc., Natick, MA) programming language and consolidated into 16 MATLAB functions. (MACGMC). MACGMC is a composite material and laminate analysis software code developed at NASA Glenn Research Center. The software package has been built around the generalized method of cells (GMC) family of micromechanics theories. The computer code is developed with a user-friendly framework, along with a library of local inelastic, damage, and failure models. Further, application of simulated thermo-mechanical loading, generation of output results, and selection of architectures to represent the composite material have been automated to increase the user friendliness, as well as to make it more robust in terms of input preparation and code execution. Finally, classical lamination theory has been implemented within the software, wherein GMC is used to model the composite material response of each ply. Thus, the full range of GMC composite material capabilities is available for analysis of arbitrary laminate configurations as well. The pre-processing tasks include generation of a multitude of different repeating unit cells (RUCs) for CMCs and PMCs, visualization of RUCs from MACGMC input and output files and generation of the RUC section of a MACGMC input file. The post-processing tasks include visualization of the predicted composite response, such as local stress and strain contours, damage initiation and progression, stress-strain behavior, and fatigue response. In addition to the above, several miscellaneous scripts have been developed that can be used to perform repeated Monte-Carlo simulations to enable probabilistic simulations with minimal manual intervention. This document is formatted to provide MATLAB source files and descriptions of how to utilize them. It is assumed that the user has a basic understanding of how MATLAB scripts work and some MATLAB programming experience

    Modeling of Melt-Infiltrated SiC/SiC Composite Properties

    Get PDF
    The elastic properties of a two-dimensional five-harness melt-infiltrated silicon carbide fiber reinforced silicon carbide matrix (MI SiC/SiC) ceramic matrix composite (CMC) were predicted using several methods. Methods used in this analysis are multiscale laminate analysis, micromechanics-based woven composite analysis, a hybrid woven composite analysis, and two- and three-dimensional finite element analyses. The elastic properties predicted are in good agreement with each other as well as with the available measured data. However, the various methods differ from each other in three key areas: (1) the fidelity provided, (2) the efforts required for input data preparation, and (3) the computational resources required. Results also indicate that efficient methods are also able to provide a reasonable estimate of local stress fields

    The Effect of Stochastically Varying Creep Parameters on Residual Stresses in Ceramic Matrix Composites

    Get PDF
    Constituent properties, along with volume fraction, have a first order effect on the microscale fields within a composite material and influence the macroscopic response. Therefore, there is a need to assess the significance of stochastic variation in the constituent properties of composites at the higher scales. The effect of variability in the parameters controlling the time-dependent behavior, in a unidirectional SCS-6 SiC fiber-reinforced RBSN matrix composite lamina, on the residual stresses induced during processing is investigated numerically. The generalized method of cells micromechanics theory is utilized to model the ceramic matrix composite lamina using a repeating unit cell. The primary creep phases of the constituents are approximated using a Norton-Bailey, steady state, power law creep model. The effect of residual stresses on the proportional limit stress and strain to failure of the composite is demonstrated. Monte Carlo simulations were conducted using a normal distribution for the power law parameters and the resulting residual stress distributions were predicted

    Multiscale Modeling of Ceramic Matrix Composites

    Get PDF
    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured

    Stochastic Simulation of Mudcrack Damage Formation in an Environmental Barrier Coating

    Get PDF
    The FEAMAC/CARES program, which integrates finite element analysis (FEA) with the MAC/GMC (Micromechanics Analysis Code with Generalized Method of Cells) and the CARES/Life (Ceramics Analysis and Reliability Evaluation of Structures / Life Prediction) programs, was used to simulate the formation of mudcracks during the cooling of a multilayered environmental barrier coating (EBC) deposited on a silicon carbide substrate. FEAMAC/CARES combines the MAC/GMC multiscale micromechanics analysis capability (primarily developed for composite materials) with the CARES/Life probabilistic multiaxial failure criteria (developed for brittle ceramic materials) and Abaqus (Dassault Systmes) FEA. In this report, elastic modulus reduction of randomly damaged finite elements was used to represent discrete cracking events. The use of many small-sized low-aspect-ratio elements enabled the formation of crack boundaries, leading to development of mudcrack-patterned damage. Finite element models of a disk-shaped three-dimensional specimen and a twodimensional model of a through-the-thickness cross section subjected to progressive cooling from 1,300 C to an ambient temperature of 23 C were made. Mudcrack damage in the coating resulted from the buildup of residual tensile stresses between the individual material constituents because of thermal expansion mismatches between coating layers and the substrate. A two-parameter Weibull distribution characterized the coating layer stochastic strength response and allowed the effect of the Weibull modulus on the formation of damage and crack segmentation lengths to be studied. The spontaneous initiation of cracking and crack coalescence resulted in progressively smaller mudcrack cells as cooling progressed, consistent with a fractal-behaved fracture pattern. Other failure modes such as delamination, and possibly spallation, could also be reproduced. The physical basis assumed and the heuristic approach employed, which involves a simple stochastic cellular automaton methodology to approximate the crack growth process, are described. The results ultimately show that a selforganizing mudcrack formation can derive from a Weibull distribution that is used to describe the stochastic strength response of the bulk brittle ceramic material layers of an EBC

    A hospital based retrospective study of thyroid disorders on obstetric and perinatal outcomes

    Get PDF
    Background: The study was undertaken in pregnant women to understand and analyze the obstetric and foetal outcomes of thyroid disorders.Methods: TSH estimation was used as universal screening in their first visit to our hospital. Those patients with abnormal TSH values, i.e. above 2.5 mIU/ml in first trimester and above 3 mIU/ml in second and third trimesters were evaluated for free T3, free T4 and TPO Abs. They were treated accordingly and dosage adjustments made and the tests repeated once in 4-6 weeks. They were followed throughout pregnancy and delivery.Results: Total no of pregnant women screened were 904 over a period of 1 year from 15 March 2019 to 14 March 2020, of which 115 had abnormal thyroid functions, thereby the prevalence of thyroid disorders being 12.72%. Of the 115 patients with thyroid disorders, 112 were hypothyroid and 3 were hyperthyroid. Among the 112 hypothyroid cases, 48 were known cases and 64 were new cases. The total cases of subclinical hypothyroidism were 88, prevalence being 9.73% and overt cases were 24, prevalence being 2.65%; 3 cases were overt hyperthyroid, prevalence being 0.33%. 66% of subclinical hypothyroidism were TPO positive and 34% of overt hypothyroidism were TPO positive (p<0.05). Out of 115 abnormal thyroid function patients, 92 patients delivered in our hospital. There were 15 abortions, 13 spontaneous and 2 terminations of pregnancies; 7 patients have delivered outside and 1 patient lost follow up.Conclusions: The prevalence of thyroid disorders during pregnancy was significantly more in our study, hypothyroidism being the commonest. Significant numbers of cases were newly diagnosed on universal screening. The commonest disorder was subclinical hypothyroidism. Adverse maternal and foetal outcomes were almost similar in both subclinical and overt hypothyroidism. The common adverse outcomes noted were abortions, pre-eclampsia, gestational diabetes mellitus, preterm births and increased rates of caesarean sections. The adverse outcomes were significantly more in autoimmune antibody positive patients
    corecore